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Abstract
We study the nature of the essential spectrum of the Dirichlet Laplacian in
tubes about infinite curves embedded in Euclidean spaces. Under suitable
assumptions about the decay of curvatures at infinity, we prove the absence
of singular continuous spectrum and state properties of possible embedded
eigenvalues. The argument is based on the Mourre conjugate operator method
developed for acoustic multistratified domains by Benbernou (1998 J. Math.
Anal. Appl. 225 440–60) and Dermenjian et al (1998 Commun. Partial Differ.
Equ. 23 141–69). As a technical preliminary, we carry out a spectral analysis
for Schrödinger-type operators in straight Dirichlet tubes. We also apply the
result to the strips embedded in abstract surfaces.

PACS numbers: 03.65.Nk, 02.30.Tb
Mathematics Subject Classification: 81Q10, 35Q40, 58J50

1. Introduction

A strong physical motivation to study the Dirichlet Laplacian in infinitely stretched tubular
regions comes from the fact that it constitutes a reasonable model for the Hamiltonian
of a non-relativistic quantum particle in mesoscopic systems called quantum waveguides
[11, 19, 26]. Since there exists a close relation between spectral and scattering properties of
Hamiltonians, one is naturally interested in carrying out the spectral analysis of the Laplacian
in order to understand the quantum dynamics in waveguides. For instance, the crucial step
in most proofs of asymptotic completeness is to show that the Hamiltonian has no singular
continuous spectrum [28]. The Laplacian in a tube has attracted considerable attention since
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it was shown in [15] that there may be discrete eigenvalues in curved waveguides. However,
a detailed analysis of the essential part of the spectrum has been left aside up to now. The
purpose of the present paper is to fill in this gap.

The usual model for a curved quantum waveguide, which we adopt in this paper, is as
follows. Let s �→ p(s) be an infinite unit-speed smooth curve in R

d , d � 2 (the physical
cases corresponding to d = 2, 3). Assuming that the curve possesses an appropriate smooth
Frenet frame {e1, . . . , ed} (cf assumption 3.1), the ith curvature κi of p, i ∈ {1, . . . , d − 1},
is a smooth function of the arc-length parameter s ∈ R. Given a bounded open connected set
ω in R

d−1 with the centre of mass at the origin, we identify the configuration space � of the
waveguide with a tube of cross-section ω about p, namely,

� := L (R × ω) L (s, u2, . . . , ud) := p(s) + uµRµ
ν(s)eν(s) (1.1)

where µ, ν are summation indices taking values in {2, . . . , d} and
(
Rµ

ν
)

is a family of
rotation matrices in R

d−1. In this paper, we choose the rotations in such a way that (s, u),
with u := (u2, . . . , ud), are orthogonal ‘coordinates’ (cf section 3.1.3) due to the technical
simplicity. It should be stressed here that while the shape of the tube � is not influenced by a
special choice of

(
Rµ

ν
)

provided ω is circular, this may no longer be true for a general cross-
section. We make the hypotheses (assumption 3.2) that κ1 is bounded, a‖κ1‖∞ < 1, with
a := supu∈ω |u|, and � does not overlap itself so that the tube can be globally parametrized by
(s, u). Our object of interest is the Dirichlet Laplacian associated with the tube, i.e.

−��
D on L2(�). (1.2)

If p is a straight line, i.e. all κi = 0, then � may be identified with the straight tube
� := R × ω. In that case, it is easy to see that the spectrum of (1.2) is purely absolutely
continuous and equal to the interval [ν1,∞), where ν1 denotes the first eigenvalue of the
Dirichlet Laplacian in the cross-section ω.

On the other hand, if p is non-trivially curved and straight asymptotically, in the sense
that the curvature κ1 vanishes at infinity, then the essential spectrum of (1.2) remains equal to
[ν1,∞). However, there are always discrete eigenvalues below ν1. When d = 2, the latter
was proved for the first time in [15] for a rapidly decaying curvature and sufficiently small a.
Numerous subsequent studies improved and generalized this initial result [8, 11, 17, 23, 24, 30].
The generalization to tubes of circular cross-section in R

3 was done in [17] (see also [11])
and the case of any dimension d � 2 and arbitrary cross-section can be found in [8]. Let us
also mention that the discrete spectrum may be generated by other local perturbations of the
straight tube � (see, e.g., [4, 7, 16]), but in the bent-tube case the phenomenon is of a purely
quantum origin because there are no classical closed trajectories, apart from those given by a
zero measure set of initial conditions in the phase space.

The main goal of the present work is a thorough analysis of the essential spectrum of
(1.2). In particular, we find sufficient conditions which guarantee that the essential spectrum
of a curved tube ‘does not differ too much’ from the straight case (for simplicity, we present
here our results only for d = 2, see theorem 3.5 for the d-dimensional case):

Theorem 1.1 (d = 2). Let � be as above for d = 2 (κ := κ1) and T := {n2ν1}∞n=1 with
ν1 := π2/(2a)2 (the set of eigenvalues of the Dirichlet Laplacian in the one-dimensional
cross-section ω). Suppose

1. κ(s), κ̈(s) −→ 0 as |s| → ∞,
2. ∃ϑ ∈ (0, 1] s.t. κ̇(s),

···κ(s) = O(|s|−(1+ϑ)).

Then

(i) σess
(−��

D

) = [ν1,∞),
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(ii) σsc
(−��

D

) = ∅,
(iii) σp

(−��
D

) ∪ T is closed and countable,
(iv) σp

(−��
D

)∖
T is composed of finitely degenerated eigenvalues which can accumulate at

points of T only.

To prove this theorem (and the general theorem 3.5), we use the conjugate operator method
introduced by Mourre [27] and lastly developed by Amrein et al [2]. Note that the set T
plays a role analogous to the set of thresholds in the Mourre theory of N-body Schrödinger
operators [9].

Actually, the property (i) holds true whenever the first curvature vanishes at infinity,
without assuming any decay of the derivatives (they may not even exist), see [24] for d = 2
and [8] for the general case. Our second result (ii) can be compared only with [13] (see
also [12]), where the problem of resonances is investigated for d = 2. Assuming that there
exists ϑ ∈ (0, 1] such that κ(s), κ̇(s)2, κ̈(s) = O(|s|−(1+ϑ)), the authors proved the absence
of singular continuous spectrum as a consequence of the completeness of wave operators
obtained by standard smooth perturbation methods of scattering theory. Note that our and
their results are independent. Indeed, while we need to require a faster decay of κ̇ and also
impose a condition on ···κ , our decay assumptions on κ and κ̈ are in contrast much weaker. Our
other spectral results (iii) and (iv) (and (ii) for d � 3) are new.

The organization of this paper is as follows. In section 2, we consider the Schrödinger-type
operator

H := −∂i G
ij ∂j + V on H(�) := L2(�) (1.3)

subject to Dirichlet boundary conditions, i and j being summation indices taking values in
{1, . . . , d},G ≡ (Gij ) a real symmetric matrix-valued measurable function on � and V the
multiplication operator by a real-valued measurable function on �. We make assumptions 2.1
and 2.2 stated below. Adapting the approach of [3, 10] to non-zero V and G different from
a multiple of the identity, we study the nature of the essential spectrum of the operator H.
In particular, we prove the absence of singular continuous spectrum and state properties of
possible embedded eigenvalues. The result is contained in theorem 2.16 and is of independent
interest. In section 3, we apply it to the case of curved tubes (1.1). Using the diffeomorphism
L : � → � and a unitary transformation (ideas which go back to [15]), we cast the
Laplacian (1.2) into a unitarily equivalent operator of the form (1.3) for which theorem 2.16
can be used. The obtained spectral results can be found in theorem 3.5 (the general version
of theorem 1.1). Finally, in section 4, we similarly investigate the essential spectrum of the
Dirichlet Laplacian in an infinite strip in an abstract two-dimensional Riemannian manifold
of curvature K. The general result is contained in theorem 4.2, while the case of flat strips,
i.e. with K = 0, is summarized in theorem 4.3 (the latter involves the curved strips in R

2 as a
special case).

For the conjugate operator method and notation used in section 2, the reader is referred
to [2] and particularly to short well-arranged reviews of the abstract theory in [3, section 2] or
[10, section 1]. A more detailed geometric background for sections 3 and 4 can be found in
[8, 22] and [18, 23], respectively.

We use the standard component notation of tensor analysis throughout the paper. In
particular, the repeated indices convention is adopted henceforth, the range of indices being
1, . . . , d for Latin and 2, . . . , d for Greek. The indices are associated in a natural way with
the components of x ∈ R × ω. The partial derivative w.r.t. xi is often denoted by a comma
with the index i. The brackets (·) are used in order to distinguish a matrix from its coefficients.
The symbols δij and δij are reserved for the components of the identity matrix 1.
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2. Schrödinger-type operators in straight tubes

2.1. Preliminaries

Let ω be an (arbitrary) bounded open connected set in R
d−1, d � 2, and consider the straight

tube � := R ×ω. Our object of interest in this section is the operator given formally by (1.3),
subject to Dirichlet boundary conditions. In addition to the basic properties required for the
matrix G and function V , we make the following assumptions.

Assumption 2.1.

1. ∃C± ∈ (0,∞) s.t. C−1 � G(x) � C+1 for a.e. x ∈ �,
2. ∀i, j ∈ {1, . . . , d}, limR→∞ ess supx∈(R\[−R,R])×ω

∣∣Gij (x) − δij
∣∣ = 0,

3. ∃ϑ1 ∈ (0, 1], C ∈ (0,∞) s.t.
(∣∣Gij

,1(x)
∣∣) � C 〈x1〉−(1+ϑ1)1 for a.e. x ∈ �,

4. G1i
,i ∈ L∞(�).

Here 〈·〉 := (1 + | · |2)1/2 and the inequalities must be understood in the sense of matrices.

Assumption 2.2.

1. V ∈ L∞(�),
2. limR→∞ ess supx∈(R\[−R,R])×ω|V (x)| = 0,
3. ∃ϑ2 ∈ (0, 1], C ∈ (0,∞) s.t. |V,1(x)| � C 〈x1〉−(1+ϑ2) for a.e. x ∈ �.

Let us fix some notations. We write Hν(�) and Hν
0(�), ν ∈ R, for the usual Sobolev

spaces [1]. Given two Hilbert spaces H1 and H2, we denote by B(H1,H2), respectively
K(H1,H2), the set of bounded, respectively compact, operators from H1 to H2. We also
define B(H1) := B(H1,H1) and K(H1) := K(H1,H1). We denote by H∗

1 the topological
antidual of H1. We write (· , ·) for the inner product in H(�) and ‖·‖ for the norm in H(�)

and B (H(�)).
We now give a meaning to the formal expression (1.3). We start by introducing the

sesquilinear form Q0 on H(�) defined by

Q0(ϕ, ψ) := (ϕ,i , δ
ijψ,j ) ϕ, ψ ∈ D(Q0) := H1

0(�) (2.1)

which is densely defined, symmetric, non-negative and closed. Consequently, there exists a
unique self-adjoint operator H0 associated with it, which is just the Dirichlet Laplacian −��

D
on L2(�). We have

H0ψ = −�ψ ψ ∈ D(H0) = {
ψ ∈ H1

0(�) : �ψ ∈ H(�)
}
.

We consider H as an operator obtained by perturbing the free Hamiltonian H0. Since the
matrix G is uniformly positive and bounded by assumption 2.1.1, the sesquilinear form
(ϕ, ψ) �→ (ϕ,i ,G

ijψ,j ), defined on D(Q0) × D(Q0), is also densely defined, symmetric,
non-negative and closed. At the same time, the potential V is supposed to be bounded by
assumption 2.2.1, which means that the sesquilinear form Q defined by

Q(ϕ,ψ) := (ϕ,i ,G
ijψ,j ) + (ϕ, V ψ) ϕ,ψ ∈ D(Q) := H1

0(�) (2.2)

gives rise to a semi-bounded self-adjoint operator H. Using the representation theorem
[21, chapter VI, theorem 2.1] and the fact that V is bounded (recall also assumption 2.1.1),
one may check that

D(H) = {
ψ ∈ H1

0(�) : ∂i G
ij ∂jψ ∈ H(�)

}
where the derivatives must be interpreted in the distributional sense, and that H is acting as in
(1.3) on its domain.

For any z ∈ C\σ(H0), respectively z ∈ C\σ(H), let R0(z) := (H0 − z)−1, respectively
R(z) := (H − z)−1.
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2.2. Localization of the essential spectrum

The Dirichlet Laplacian −�ω
D on L2(ω), i.e. the operator associated with

q(ϕ,ψ) := (ϕ,µ, δµνψ,ν) ϕ, ψ ∈ D(q) := H1
0(ω)

has a purely discrete spectrum consisting of eigenvalues ν1 < ν2 � ν3 � · · · with ν1 > 0. We
set T := {νn}∞n=1. Since H0 is naturally decoupled in the following way:

H0 = −�R ⊗ 1 + 1 ⊗ (−�ω
D

)
on L2(R) ⊗ L2(ω)

where ‘⊗’ denotes the closed tensor product, 1 denotes the identity operators on appropriate
spaces and −�R is the Laplacian on L2(R), one has

σ(H0) = σess(H0) = [ν1,∞). (2.3)

In order to prove that (under our assumptions) H possesses the same essential spectrum, we
need the following lemma.

Lemma 2.1. Let ϕ ∈ C∞
0 (R) and set φ := ϕ ⊗ 1 on �. Then, as a multiplication operator,

φ ∈ K
(
D(H0),H1

0(�)
)
.

Proof. Since

φ = H
−1/2
0 H

1/2
0 φH−1

0 H0

in B(D(H0),H1
0(�)), H0 ∈ B(D(H0),H(�)) and H

−1/2
0 ∈ B

(
H(�),H1

0(�)
)
, it is enough

to prove that H
1/2
0 φH−1

0 ∈ K(H(�)). However,

H
1/2
0 φH−1

0 = H
−1/2
0 [H0, φ]H−1

0 + H
−1/2
0 φ

= −H
−1/2
0 (2φ,1∂1 + φ,11)H

−1
0 + H

−1/2
0 φ (2.4)

where each term on the rhs is in K(H(�)). Let us demonstrate it for the first term. Since
∂1H

−1
0 ∈ B(H(�)), it is sufficient to prove that H

−1/2
0 φ,1 ∈ K(H(�)). Let z1 ∈ (−∞, 0)

and z2 ∈ (−∞, ν1) be such that z1 + z2 = 0. Define R�(z1) := (−�R − z1)
−1 and

R⊥(z2) := (−�ω
D − z2

)−1
. Then, using some standard results on tensor products of operators

[20, chapter 11], one can write

H
−1/2
0 φ,1 = H

−1/2
0

[
R

−1/4
�

(z1) ⊗ R
−1/4
⊥ (z2)

][
R

1/4
�

(z1)ϕ,1 ⊗ R
1/4
⊥ (z2)

]
where ϕ,1 is viewed as a multiplication operator in L2(R). The third factor on the rhs
is in K(H(�)) because −�ω

D has a compact resolvent and R
1/4
�

(z1) ϕ,1 ∈ K(L2(R)) by
[2, theorem 4.1.3]. The remaining factors can be rewritten as

�(X1, X2) := (X1 + X2)
−1/2X

1/4
1 X

1/4
2

with X1 := (−�R − z1) ⊗ 1 and X2 := 1 ⊗ (−�ω
D − z2

)
(both self-adjoint and mutually

commuting). So, one can estimate

‖�(X1, X2)‖ � sup
x1,x2∈(0,∞)

(x1 + x2)
−1/2(x1x2)

1/4 < ∞.

Hence, the first term on the rhs of (2.4) is in K(H(�)). The argument is similar for the
remaining terms. �

Proposition 2.2. One has

(i) ∀z ∈ C\(σ (H) ∪ σ(H0)), R(z) − R0(z) ∈ K(H(�)),
(ii) σess(H) = [ν1,∞).
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Proof. We prove (i) for some (and hence for all) values of z ∈ C\(σ (H) ∪ σ(H0)). Let
z ∈ C\R. Define R1(z) := (H0 + V − z)−1. Then, one has

R(z) − R0(z) = R(z) − R1(z) − R1(z)V R0(z).

Let us first consider R(z) − R1(z). Knowing that H and H0 + V have the same form domain,
the identity

R(z) − R1(z) = −R(z)(H − H0 − V )R1(z)

holds in B
(
H−1(�),H1

0(�)
)
. But, one has the following sequence of continuous and dense

embeddings of Hilbert spaces

D(H) ⊂ H1
0(�) ⊂ H(�) ⊂ H−1(�) ⊂ D(H)∗

which implies that R(z) extends (by duality) to a homeomorphism ofD(H)∗ ontoH(�). Thus,
since R1(z) is also a homeomorphism from H(�) onto D(H0), R(z) − R1(z) ∈ K(H(�)) if
and only if H − H0 − V ∈ K(D(H0),D(H)∗). For all n ∈ N\{0}, let ϕn ∈ C∞

0 (R) be such
that 0 � ϕn � 1 and

ϕn(x
1) =

{
1 if |x1| � n

0 if |x1| � n + 1.

Set φn := ϕn ⊗ 1 on � and

Knψ := −∂i F
ij φn∂j ψ ψ ∈ D(H0)

where (F ij ) := (Gij − δij ). Clearly, H − H0 − V ,Kn ∈ B(D(H0),D(H)∗) and

‖Kn − (H − H0 − V )‖B(D(H0),D(H)∗)

≡ sup
ψ∈D(H0),‖ψ‖D(H0)=1

‖(1 + H 2)−1/2[−∂iF
ij (φn − 1)∂j ]ψ‖

� sup
ψ∈D(H0),‖ψ‖D(H0)=1

d∑
j=1

‖(1 + H 2)−1/2∂i‖‖F ij (φn − 1)‖∞‖ψ‖H1
0(�)

−−−→
n→∞ 0

where we have used the fact that D(H0) ⊂ H1
0(�) continuously and assumption 2.1.2 in the

final step. So, it only remains to show that Kn ∈ K(D(H0),D(H)∗). After a commutation,
one gets in B(D(H0),D(H)∗)

Kn = −∂i F
ij ∂j φn + ∂i F

i1φn,1

where φn, φn,1 are seen as multiplication operators in H(�). It is clear that both ∂i F
ij ∂j

and ∂i F
i1 are in B

(
H1

0(�),D(H)∗
)
. Moreover, φn and φn,1 are in K

(
D(H0),H1

0(�)
)

by
lemma 2.1. Thus, Kn ∈ K(D(H0),D(H)∗) so that R(z) − R1(z) ∈ K(H(�)). Using similar
arguments, one can also prove that R1(z)V φnR0(z) is compact and converges to R1(z)V R0(z)

in B(H(�)) due to assumption 2.2.2. This implies that R1(z)V R0(z) ∈ K(H(�)).

(ii) It is a direct consequence of (i), (2.3) and Weyl’s theorem [29, theorem XIII.14]. �

Remark 2.3. Note that assumptions 2.1.3, 2.1.4 and 2.2.3 are not used in the proof of
proposition 2.2.
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2.3. Nature of the essential spectrum

This part is devoted to a more detailed analysis of the essential spectrum of H. In particular,
we show that the singular continuous spectrum is empty. The strategy adapted from [3] is the
following. Firstly, we construct a dilation operator A such that H0 ∈ C∞(A) and H ∈ C1+ϑ(A)

with ϑ := min{ϑ1, ϑ2} ∈ (0, 1] (see [2], [3, section 2] or [10, section 1] for definitions of the
spaces involved here and in the following). Secondly, we prove that A is strictly conjugate (in
Mourre’s sense) to H0 on R\T . Finally, since R(i) − R0(i) is compact by the first claim of
proposition 2.2 and both H and H0 are of class C1

u(A) ⊇ C1+ϑ(A) ⊇ C∞(A), it follows that
A is conjugate to H on R\T as well.

2.3.1. The dilation operator. Let q1 be the multiplication operator by the coordinate x1 in
H(�). Let

A := 1
2 (q1p1 + p1q

1) with p1 := −i ∂1 (2.5)

be the dilation operator in H(�) w.r.t. x1, i.e. the self-adjoint extension of the operator defined
by expression (2.5) with C∞

0 (�) as initial domain. Define A� as the self-adjoint operator in
L2(R) such that A = A� ⊗ 1.

Remark 2.4. The group {eiAt }t∈R leaves invariant H1
0(�). Indeed, using the natural

isomorphism H1
0(�) � H1(R) ⊗ H1

0(ω), one can write

∀t ∈ R, eiAtH1
0(�) = (eiA�tH1(R)) ⊗ H1

0(ω).

Then, the affirmation follows from the fact [2, proposition 4.2.4] that H1(R) is stable under
{eiA�t }t∈R.

In order to deal with the commutator i[H,A], we need the following family of operators,

{p1(ε) := p1(1 + iεp1)
−1}ε>0 (2.6)

which regularizes the momentum operator p1:

Lemma 2.5. One has

(i) {p1(ε)}ε>0 ⊂ B(H(�)),
(ii) {p1(ε)}ε>0 is uniformly bounded in B(H1(�),H(�)) and s-limε→0 p1(ε) = p1 in

B(H1(�),H(�)),
(iii) ∀ε > 0, [p1(ε), q1] = −i(1 + iεp1)

−2 in B(H(�)),
(iv) ∀ε > 0, p1(ε)H1

0(�) ⊂ H1
0(�).

Proof. The first three assertions are established in [3, lemma 4.1]. Consequently, it only
remains to prove the last statement. Using the isomorphism mentioned in remark 2.4, one can
write

∀ε > 0, p1(ε)H1
0(�) = −iε−1{[1 + iε−1(p1 − iε−1)−1]H1(R)} ⊗ H1

0(ω)

where p1 on the rhs must be viewed as an operator acting in L2(R). With this last relation, it
is clear that H1

0(�) is left invariant by the family {p1(ε)}ε>0. �

We also need the following density result for the set D(H)c := {ψ ∈ D(H) : supp(ψ)

is compact}.
Lemma 2.6. One has

(i) D(H)c is dense in D(H)

(ii) D(H)c is dense in H1
0(�).
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Proof. (i) We are inspired by [10, lemma 2.1]. Let ψ ∈ D(H). Define ϕ0 ∈ C∞
0 (R) such that

ϕ0(x
1) =

{
1 if |x1| � 1
0 if |x1| � 2.

Let n ∈ N. Set ϕn(x
1) := ϕ0(x

1/(n + 1)) for x1 ∈ R and φn := ϕn ⊗ 1 on �. Then,
φnψ ∈ H1

0(�), limn→∞ φnψ = ψ in H(�) and

Hφnψ = φnHψ − 2φn,1G
1j ψ,j − φn,11G

11ψ − φ,1G
1i

,i ψ (2.7)

in the sense of distributions. Using the fact that supp(φn) is compact, assumptions 2.1.1 and
2.1.4, one has φnψ ∈ D(H)c. Moreover, as a consequence of (2.7) and the property

∀k ∈ N,∀x ∈ � ∂k
1 φn(x) = (n + 1)−kϕ

(k)
0 (x1/(n + 1))

one also has limn→∞ Hφnψ = Hψ in H(�).
(ii) Using point (i) and the fact that D(H) ⊂ H1

0(�) continuously and densely, one gets
the following embeddings,

H1
0(�) = D(H)c

D(H)
H1

0(�)

⊆ D(H)c
H1

0(�)
H1

0(�)

= D(H)c
H1

0(�) ⊆ H1
0(�)

which, in particular, imply that D(H)c is dense in H1
0(�). �

Now, we can compute the commutator i[H,A].

Proposition 2.7. The sesquilinear form Q on H(�) defined by

Q(ϕ, ψ) := i[(Hϕ,Aψ) − (Aϕ,Hψ)] ϕ,ψ ∈ D(Q) := D(H) ∩ D(A)

is continuous on D(H)c for the topology induced by H1
0(�). Moreover,

i[H,A] = −∂j G1j ∂1 − ∂1G
1j ∂j + ∂i q

1Gij
,1∂j − q1V,1 (2.8)

as operators in B
(
H1

0(�),H−1(�)
)
.

Proof. Let ϕ,ψ ∈ D(H)c. Using the identity A = q1p1 − i
2 valid on D(H)c ⊂ D(A), we

have

Q(ϕ, ψ) = i[(Hϕ,Aψ) − (Aϕ,Hψ)]

= (ϕ,Hψ) + i[(−∂i G
ij ∂j ϕ, q1p1ψ) − (q1p1ϕ,−∂i G

ij ∂j ψ)]

+ (V ϕ, q1ψ,1) + (q1ϕ,1, V ψ).

In order to justify the subsequent integration by parts, we employ the family (2.6). Since ψ

has a compact support and belongs to H1
0(�), it follows by using properties (iii) and (iv) of

lemma 2.5 that q1p1(ε)ψ ∈ H1
0(�) for all ε > 0. So, we can write

(−∂i G
ij ∂j ϕ, q1p1ψ) = lim

ε→0
(−∂i G

ij ∂j ϕ, q1p1(ε)ψ)

= lim
ε→0

(ϕ,j ,G
ij ∂i q

1p1(ε)ψ)

= −i(ϕ,j ,G
1j ψ,1) + lim

ε→0
(ϕ,i ,G

ij q1p1(ε)ψ,j )

and similarly for the integral

(q1p1ϕ,−∂i G
ij ∂j ψ) = i(ϕ,1,G

1j ψ,j ) + lim
ε→0

(p1(ε)
∗ϕ,i, q

1Gij ψ,j ).
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Since

lim
ε→0

(p1(ε)
∗ϕ,i, q

1Gij ψ,j ) = lim
ε→0

(ϕ,i , p1(ε)q
1Gij ψ,j )

= −i
[
(ϕ,i ,G

ij ψ,j ) +
(
ϕ,i, q

1Gij
,1ψ,j

)]
+ lim

ε→0
(ϕ,i , q

1Gijp1(ε)ψ,j )

and

(q1ϕ,1, V ψ) = −(ϕ, ∂1q
1V ψ) = −(ϕ, V ψ) − (ϕ, q1V,1ψ) − (ϕ, q1V ψ,1)

we finally obtain that

Q(ϕ, ψ) = (ϕ,j ,G
1j ψ,1) + (ϕ,1,G

1j ψ,j ) − (
ϕ,i, q

1Gij
,1ψ,j

) − (ϕ, q1V,1ψ). (2.9)

This implies that Q restricted to D(H)c is continuous for the topology induced by H1
0(�).

Now, D(H)c is dense in H1
0(�) by lemma 2.6(ii). Thus, Q defines (by continuous extension)

an operator in B
(
H1

0(�),H−1(�)
)
, which we shall denote i[H,A]. Furthermore, using (2.9),

we obtain (2.8) in B
(
H1

0(�),H−1(�)
)
. �

2.3.2. Strict Mourre estimate for the free Hamiltonian. Now we prove that H0 is of class
C∞(A) and A is strictly conjugate to it on R\T . So, let us first recall the following definition
[2, section 7.2.1 & 7.2.2]:

Definition 2.8. Let A,H be self-adjoint operators in a Hilbert space H with H of class C1(A).
Furthermore, if S, T ∈ B(H), we write S � T if there exists K ∈ K(H) so that S � T + K .
Then, ∀λ ∈ R,

�A
H (λ) := sup{a ∈ R : ∃ε > 0 s.t. EH(λ; ε)i[H,A]EH (λ; ε) � aEH (λ; ε)}

�̃A
H (λ) := sup{a ∈ R : ∃ε > 0 s.t. EH(λ; ε)i[H,A]EH (λ; ε) � aEH (λ; ε)}

where EH (λ; ε) := EH ((λ− ε, λ + ε)) designates the spectral projection of H for the interval
(λ − ε, λ + ε).

We also need the following natural generalization of [5, theorem 3.4].

Theorem 2.9. Let H1, H2 be two self-adjoint, bounded from below operators in the Hilbert
spaces H1, H2. Assume that A ,  = 1, 2, is a self-adjoint operator in H such that H is of
class Ck(A ), k ∈ (N\{0}) ∪ {+∞}. Let H := H1 ⊗ 1 + 1 ⊗ H2 and A := A1 ⊗ 1 + 1 ⊗ A2,
which are self-adjoint operators in H1 ⊗ H2. Then H is of class Ck(A) and ∀λ ∈ R,

�A
H (λ) = inf

λ=λ1+λ2

[
�

A1
H1

(λ1) + �
A2
H2

(λ2)
]
.

Corollary 2.10. H0 ∈ C∞(A) and

∀λ ∈ R, �A
H0

(λ) =
{

2ρ(λ) if λ � ν1

+∞ if λ < ν1
(2.10)

where ρ(λ) := λ − sup{ζ ∈ T : ζ � λ} is strictly positive on R\T .

Proof. A1 := A�, A2 := 0 are self-adjoint in L2(R), respectively L2(ω). H1 := p2
1,

H2 := −�ω
D are self-adjoint, bounded from below in L2(R), respectively L2(ω). Clearly,

p2
1 ∈ C∞(A�) and −�ω

D ∈ C∞(0) [2, example 6.2.8]. The first part of the claim and (2.10)
then follows from theorem 2.9. The expression for ρ(λ) is a direct consequence of the
respective behaviours of [2, section 7.2.1] �

A�

p2
1

and �0
−�ω

D
:


 �

A�

p2
1
(λ1)

�0
−�ω

D
(λ2)


 =




[
2λ1

+∞
]

if

[
λ1 � 0

λ1 < 0

]
[

0

+∞
]

if

[
λ2 ∈ T

λ2 ∈ R\T
]

.
�



5458 D Krejčiřı́k and R Tiedra de Aldecoa

2.3.3. Regularity of the Hamiltonian. In order to prove the regularity of H, we need two
technical lemmas.

Lemma 2.11. ∀z ∈ R\σ(H),∀ϑ � 1, one has

(i) [R(z), 〈q1〉ϑ ] ∈ B
(
H(�),H1

0(�)
)
,

(ii) ∀i ∈ {1, . . . , d}, [R(z), 〈q1〉ϑ ]∂i ∈ B
(
H(�),H1

0(�)
)
.

This is established by adapting the proof of [3, lemma 4.3] while the next lemma follows from
the use of [3, proof of proposition 4.2].

Lemma 2.12. Let S ∈ B(H(�)) be self-adjoint and ϑ ∈ (0, 1], then

〈q1〉ϑS ∈ B(H(�),Hϑ(R) ⊗ L2(ω)) �⇒ S ∈ Cϑ(A).

(Note that the proof involves principally two facts. First, S ∈ B(H(�),D(|A|ϑ)) implies that
S ∈ Cϑ(A). Second, the continuous embedding Hϑ

ϑ (R) ⊆ D(|A�|ϑ), which follows by real
interpolation [2, section 2.7] from the continuous embedding H1

1(R) ⊆ D(|A�|).)
Remark 2.13. The facts that i[H,A] ∈ B

(
H1

0(�),H−1(�)
)

and that H1
0(�) is stable under

{eiAt }t∈R imply [2, section 6.3] that H ∈ C1(A).

Proposition 2.14. ∃ϑ ∈ (0, 1] such that H ∈ C1+ϑ(A).

Proof. We show that each term appearing in the expression for B := i[H,A] is at least of
class Cγ (A) for a certain γ ∈ (0, 1].

Consider first B1 := −∂j Gj1∂1 − ∂1G
1j ∂j . An explicit calculation (analogous to that of

the proof of proposition 2.7) implies that

i[B1, A] = −2∂1G
11∂1 − ∂1G

1j ∂j − ∂j Gj1∂1 + ∂j q1Gj1
,1∂1 + ∂1q

1G1j
,1∂j

as operators in B
(
H1

0(�),H−1(�)
)
. Thus, B1 ∈ C1(A) by remark 2.13.

Let z ∈ R\σ(H). As a consequence of the fact that H ∈ C1(A), one can interpret
i[A,R(z)] as the product of [2, section 6.2.2] three bounded operators, viz R(z) : H(�) →
D(H), B : D(H) → D(H)∗ and R(z) : D(H)∗ → H(�). Thus, using proposition 2.7, one
can write as an operator identity in B(H(�))

i[A,R(z)] = R(z)BR(z) = R(z)B1R(z) + R(z)∂i q
1Gij

,1∂jR(z) − R(z)q1V,1R(z).

Since the first term has already been shown to be bounded, it is enough to prove that the second
and third terms on the rhs are of class Cγ (A) for some γ ∈ (0, 1].

We employ lemma 2.12 with ϑ := min{ϑ1, ϑ2} in order to deal with both terms. Using
some commutation relations, we get

〈q1〉ϑR(z)∂i q
1Gij

,1∂j R(z) = R(z)∂i 〈q1〉ϑq1Gij
,1∂j R(z)

− [R(z), 〈q1〉ϑ ]∂i q
1Gij

,1∂j R(z) − R(z)[∂i, 〈q1〉ϑ ]q1Gij
,1∂j R(z).

Under assumption 2.1.3, the first term on the rhs is in B
(
H(�),H1

0(�)
)
. The second and the

last one are in B
(
H(�),H1

0(�)
)

by lemma 2.11(ii) and the boundedness of 〈q1〉ϑ,1, respectively.
Moreover,

〈q1〉ϑR(z)q1V,1R(z) = R(z)〈q1〉ϑq1V,1R(z) + [〈q1〉ϑ , R(z)]q1V,1R(z)

is in B
(
H(�),H1

0(�)
)

by assumption 2.2.3 and lemma 2.11(i). Thus, all the terms in the
expression of B are at least of class Cϑ(A). This implies the claim. �
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2.3.4. The main result

Proposition 2.15. ∀λ ∈ R\T , �̃A
H (λ) > 0.

Proof. Corollary 2.10 and proposition 2.14 imply that both H0 and H are of class C1
u(A).

Furthermore, R(i) − R0(i) is compact by proposition 2.2, with the result that �̃A
H = �̃A

H0
due

to [2, theorem 7.2.9]. Finally, since �̃A
H0

� �A
H0

[2, proposition 7.2.6], we can conclude using
corollary 2.10. �

Summing up, we result in the following spectral properties of H.

Theorem 2.16. Let ω be a bounded open connected set in R
d−1, d � 2, and denote by T the

set of eigenvalues of −�ω
D. Let H be the operator (1.3) with � := R × ω, subject to Dirichlet

boundary conditions, and satisfying assumptions 2.1 and 2.2. Then

(i) σess(H) = [κ,∞), where κ := inf T ,
(ii) σsc(H) = ∅,

(iii) σp(H) ∪ T is closed and countable,
(iv) σp(H)\T is composed of finitely degenerated eigenvalues, which can accumulate at the

points of T only.

Proof. The claim (i) is included in proposition 2.2. Since A is conjugate to H on R\T by
proposition 2.15, the assertions (ii)–(iv) follow by the abstract conjugate operator method
[2, theorem 7.4.2]. �

To conclude this section, let us remark that assumptions 2.1.3 and 2.2.3 could be weakened.
Firstly, we recall that the situation with V = 0 and G = ρ1, ρ being a real-valued function
greater than a strictly positive constant, is investigated in [3, 10] where the authors admit local
singularities of ρ. More specifically, one assumes that ρ = ρs + ρ�, where ρ� is the part
satisfying a condition analogous to assumption 2.1.3, while ρs need not be differentiable. (In
[3], supp(ρs) is assumed to be compact. The result of [10] is better in the sense that ρs is
only supposed to be a short-range perturbation there. However, this requires strengthening
of the condition analogous to assumption 2.1.2 about the decay of ρ at infinity.) Secondly,
the optimal conditions one has to impose on the potential of a Schrödinger operator are
known [6, 2].

3. Curved tubes

In this part, we use theorem 2.16 in order to find geometric sufficient conditions which
guarantee that the spectral results of the theorem hold true for curved tubes.

3.1. Geometric preliminaries

3.1.1. The reference curve. Given d � 2, let p : R → R
d be a regular unit-speed smooth

(i.e. C∞-smooth) curve satisfying the following hypothesis.

Assumption 3.1. There exists a collection of d smooth mappings ei : R → R
d with the

following properties:

1. ∀i, j ∈ {1, . . . , d},∀s ∈ R, ei(s) · ej (s) = δij ,
2. ∀i ∈ {1, . . . , d − 1},∀s ∈ R, the ith derivative p(i)(s) of p(s) lies in the span of

e1(s), . . . , ei(s),
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3. e1 = ṗ,
4. ∀s ∈ R, {e1(s), . . . , ed(s)} has the positive orientation,
5. ∀i ∈ {1, . . . , d − 1},∀s ∈ R, ėi(s) lies in the span of e1(s), . . . , ei+1(s).

Here and in the following, ‘ · ’ denotes the inner product in R
d .

Remark 3.1. A vector field with the property 1 is called a moving frame along p and it is a
Frenet frame if it satisfies 2 in addition, cf [22, section 1.2]. A sufficient condition to ensure
the existence of the frame of assumption 3.1 is to require that [22, proposition 1.2.2], for
all s ∈ R, the vectors ṗ(s), p(2)(s), . . . , p(d−1)(s) are linearly independent. This is always
satisfied if d = 2. However, we do not assume a priori the above non-degeneracy condition
for d � 3 because it excludes the curves such that, for some open I ⊆ R, p � I lies in a
lower-dimensional subspace of R

d .

The properties of {e1, . . . , ed} summarized in assumption 3.1 yield [22, section 1.3] the Serret–
Frenet formulae

ėi = Ki
j ej (3.1)

with K ≡ (
Ki

j
)

being a skew-symmetric d × d matrix defined by

K :=




0 κ1 0

−κ1
. . .

. . .

. . .
. . . κd−1

0 −κd−1 0


 . (3.2)

Here κi is called the ith curvature of p. Under our assumption 3.1, the curvatures are smooth
functions of the arc-length parameter s ∈ R.

3.1.2. The appropriate moving frame. In this subsection, we introduce another moving frame
along p, which better reflects the geometry of the curve, and will be used later to define a tube
about it. We shall refer to it as the Tang frame because it is a natural generalization of the Tang
frame known from the theory of three-dimensional waveguides [31, 17, 11]. Our construction
follows the generalization introduced in [8].

Let the (d − 1) × (d − 1) matrix
(
Rµ

ν
)

be defined by the system of differential equations

Ṙµ
ν + Rµ

αKα
ν = 0 (3.3)

with
(
Rµ

ν(s0)
)

being a rotation matrix in R
d−1 for some s0 ∈ R as initial condition, i.e.

det
(
Rµ

ν(s0)
) = 1 and δαβRµ

α(s0)Rν
β(s0) = δµν. (3.4)

The solution of (3.3) exists and is smooth by standard arguments in the theory of differential
equations (cf [25, section 4]). Furthermore, conditions (3.4) are satisfied for all s0 ∈ R.
Indeed, by means of Liouville’s formula [25, theorem 4.7.1] and tr(K) = 0, one checks that
det

(
Rµ

ν
) = 1 identically, while the validity of the second condition for all s0 ∈ R is obtained

via the skew-symmetry of K:(
δαβRµ

αRν
β
). = −Rµ

α
(
δγβKα

γ + δαγKβ
γ
)
Rν

β = 0.

We set

R ≡ (
Ri

j
)

:=
(

1 0
0

(
Rµ

ν
))
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and introduce the Tang frame as the moving frame {ẽ1, . . . , ẽd} along p defined by

ẽi := Ri
j ej . (3.5)

Combining (3.1) with (3.3), one easily finds
˙̃e1 = κ1e2 and ˙̃eµ = Rµ

αKα
1e1 = −κ1Rµ

2e1. (3.6)

The interest of the Tang frame will appear in the following subsection.

3.1.3. The tube. Let ω be a bounded open connected set in R
d−1. Without loss of generality,

we assume that ω is translated so that its centre of mass is at the origin. Let � := R × ω be a
straight tube. We define the curved tube � of the same cross-section ω about p as the image
of the mapping

L : � → R
d (s, u2, . . . , ud) �→ p(s) + ẽµ(s)uµ (3.7)

i.e. � := L (�).
As already mentioned in the introduction, the shape of the curved tube � of cross-section

ω about p depends on the choice of rotations
(
Rµ

ν
)

in (3.5), unless ω is rotation invariant.
As usual in the theory of quantum waveguides (see, e.g. [11, 8]), we restrict ourselves to
the technically most advantageous choice determined by (3.3), i.e. when the cross-section ω

rotates along p w.r.t. the Tang frame (another choice can be found in [14]).
We write u ≡ (u2, . . . , ud), define a := supu∈ω |u| and always assume.

Assumption 3.2.

1. κ1 ∈ L∞(R) and a‖κ1‖∞ < 1,
2. � does not overlap itself.

Then, the mapping L : � → � is a diffeomorphism. Indeed, by virtue of the inverse function
theorem, the first condition guarantees that it is a local diffeomorphism which is global through
the injectivity induced by the second condition. Consequently, L −1 determines a system of
global (geodesic or Fermi) ‘coordinates’ (s, u). At the same time, the tube � can be identified
with the Riemannian manifold (�, g), where g ≡ (gij ) is the metric tensor induced by the
immersion (3.7), that is gij := L,i · L,j . Formulae (3.6) yield

g = diag(h2, 1, . . . , 1) with h(s, u) := 1 + uµRµ
α(s)Kα

1(s). (3.8)

Note that the metric tensor (3.8) is diagonal due to our special choice of the ‘transverse’ frame
{ẽ2, . . . , ẽd}, which is the advantage of the Tang frame.

We set |g| := det(g) = h2, which defines through dv := h(s, u) ds du the volume element
of �; here du denotes the (d − 1)-dimensional Lebesgue measure in ω.

Remark 3.2 (Low-dimensional examples). When d = 2, the cross-section ω is just the
interval (−a, a), the curve p has only one curvature κ := κ1, the rotation matrix

(
Rµ

ν
)

equals
(the scalar) 1 and

h(s, u) = 1 − κ(s)u.

If d = 3, it is convenient to make the ansatz(
Rµ

ν
) =

(
cos α −sin α

sin α cos α

)
where α is a real-valued differentiable function. Then, it is easy to see that (3.3) reduces to
the differential equation α̇ = τ , where τ is the torsion of p, i.e. one puts κ := κ1 and τ := κ2.
Choosing α as an integral of τ , we can write

h(s, u) = 1 − κ(s)[u2 cos α(s) + u3 sin α(s)].
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Remark 3.3 (On assumption 3.2). If p were a compact embedded curve, then assumption 3.2
could always be achieved for sufficiently small a. In general, however, one cannot exclude
self-intersections of the tube using the local geometry of an embedded curve p only. One way
to avoid this disadvantage would be to consider (�, g) as an abstract Riemannian manifold
where only the curve p is embedded in R

d . Nonetheless, in the present paper, we prefer to
assume assumption 3.2.2 a priori because � does not have a physical meaning if it is self-
intersecting. Finding global geometric conditions on p ensuring the validity of assumption
3.2.2 is an interesting question, which is beyond the scope of the present paper, however.

3.2. The Laplacian

Our object of interest is the Dirichlet Laplacian (1.2), with � defined by (3.7). We construct
it as follows. Using the diffeomorphism (3.7), we identify the Hilbert space L2(�) with
L2(�, dv) and consider on the latter the Dirichlet form

Q̃(ϕ,ψ) :=
∫

�

ϕ,i g
ijψ,j dv ϕ,ψ ∈ D(Q̃) := H1

0(�, dv) (3.9)

where (gij ) := g−1. The form Q̃ is clearly densely defined, non-negative, symmetric and
closed on its domain. Consequently, there exists a unique non-negative self-adjoint operator
H̃ satisfying D(H̃ ) ⊂ D(Q̃) associated with Q̃. We have

H̃ψ = −|g|−1/2∂i |g|1/2gij ∂j ψ (3.10)

ψ ∈ D(H̃ ) = {
ψ ∈ H1

0(�, dv) : ∂i |g|1/2gij ∂j ψ ∈ L2(�, dv)
}
. (3.11)

That is, H̃ is the Laplacian (1.2) expressed in the coordinates (s, u).
In order to apply theorem 2.16, we transform H̃ into a unitarily equivalent operator

H of the form (1.3) acting on the Hilbert space H(�) := L2(�), without the additional
weight |g|1/2 in the volume element. This is achieved by means of the unitary mapping
U : L2(�, dv) → H(�),ψ �→ |g|1/4ψ . Defining H := UH̃ U−1, one has

Hψ = −|g|−1/4∂i |g|1/2gij ∂j |g|−1/4ψ, (3.12)

ψ ∈ D(H) = {
ψ ∈ H1

0(�) : ∂i |g|1/2gij ∂j |g|−1/4ψ ∈ L2(�)
}
. (3.13)

Commuting |g|−1/4 with the gradient components in the expression for H, we obtain on D(H)

H = −∂i g
ij ∂j + V (3.14)

where

V := −5

4

(h,1)
2

h4
+

1

2

h,11

h3
− 1

4

δµν h,µh,ν

h2
+

1

2

δµν h,µν

h
. (3.15)

Actually, (3.14) with (3.15) is a general formula valid for any smooth metric of the
form g = diag(h2, 1, . . . , 1). In our special case with h given by (3.8), we find that
h,µν = 0, δµνh,µh,ν = δαβKα

1Kβ
1 by (3.4), while (3.3) gives

h,1(·, u) = uµRµ
α
(
K̇α

1 − Kα
βKβ

1
)

h,11(·, u) = uµRµ
α
(
K̈α

1 − K̇α
βKβ

1 − 2Kα
βK̇β

1 + Kα
βKβ

γKγ
1). (3.16)
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3.3. Results

It remains to impose decay conditions on the curvatures of p (and their derivatives) in order
that the operator (3.14) satisfies assumptions 2.1 and 2.2.

Let us first consider the more general situation where the matrix (gij ) is equal to
diag(h−2, 1, . . . , 1) with the explicit dependence of h on s and u not specified. One shows that
it is sufficient to impose the following hypotheses.

Assumption 3.3. Uniformly for u ∈ ω,

1. h(s, u) −→ 1 as |s| → ∞,
2. h,11(s, u), (δµν h,µh,ν)(s, u), δµν h,µν(s, u) −→ 0 as |s| → ∞,
3. ∃ϑ ∈ (0, 1] s.t.

h,1(s, u), h,111(s, u), (δµν h,µh,ν),1(s, u), δµν h,1µν(s, u) = O(|s|−(1+ϑ)).

Indeed, the first hypothesis supplies assumption 2.1.2, while assumption 2.1.1 is fulfilled due
to basic assumption 3.2. Next, since h is a smooth function, assumption 3.3.2 together with
the behaviour of h,1 in assumption 3.3.3 are sufficient to ensure both assumption 2.2.1 and
assumption 2.2.2. It is also clear that the asymptotic behaviour of h,1 in assumption 3.3.3
supplies assumption 2.1.3. Assumption 2.1.4 holds true due to assumption 2.1.3 and the
particular form of (gij ). It remains to check assumption 2.2.3. This is easily done by
calculating the derivative of the potential (3.15):

V,1 = 5
(h,1)

3

h5
− 4

h,1h,11

h4
+

h,111

2h3
+

δµν

2

(
h,1h,µh,ν

h3
− h,1h,µν + h,1µh,ν

h2
+

h,1µν

h

)
.

With h given by (3.8), we find in addition to (3.16) that h,1µν = 0 and

(δµνh,µh,ν),1 = 2δαβK̇α
1Kβ

1

h,111(·, u) = uµRµ
α
(···Kα

1 − K̈α
βKβ

1 − 3Kα
βK̈β

1 − 3K̇α
βK̇β

1 + K̇α
βKβ

γKγ
1

+ 2Kα
βK̇β

γKγ
1 + 3Kα

βKβ
γ K̇γ

1 − Kα
βKβ

γKγ
δKδ

1
)
.

Since |uµRµ
α| < a, assumption 3.3 holds true provided we impose the following conditions

on the curvatures:

Assumption 3.4.

1. ∀α ∈ {2, . . . , d},Kα
1(s), K̈α

1(s) −→ 0 as |s| → ∞,
2. ∀α, β ∈ {2, . . . , d},Kα

β, K̇α
2 ∈ L∞(R),

3. ∃ϑ ∈ (0, 1] s.t. ∀α ∈ {2, . . . , d},
K̇α

1(s),
···Kα

1(s),Kα
2(s), K̈α

2(s),
(
K̇α

βKβ
2
)
(s),

(
Kα

βK̇β
2
)
(s) = O(|s|−(1+ϑ)).

Remark 3.4. These conditions reduce to those of theorem 1.1 provided d = 2. When d = 3,
it is sufficient to assume the conditions of theorem 1.1 for the first curvature, and κ̇2 ∈ L∞(R)

and κ2(s), κ̈2(s) = O(|s|−(1+ϑ)) for some ϑ ∈ (0, 1].

We conclude this section by applying theorem 2.16.

Theorem 3.5. Let � be a tube defined via (3.7) about a smooth infinite curve embedded
in R

d . Consider assumptions 3.1, 3.2 and 3.4. Then all the spectral results (i)–(iv) of
theorem 2.16 hold true for the Dirichlet Laplacian on L2(�).
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4. Curved strips on surfaces

In this final section, we investigate the situation where the ambient space is a general
Riemannian manifold instead of the Euclidean space R

d . We restrict ourselves to d = 2,
i.e. � is a strip around an infinite curve in an (abstract) two-dimensional surface. We refer to
[23] for basic spectral properties of −��

D and geometric details.

4.1. Preliminaries

Let A be a smooth connected complete non-compact two-dimensional Riemannian manifold
of bounded Gauss curvature K. Let p : R → A be a smooth unit-speed curve embedded in A
with (geodesic) curvature κ and denote by n : R → Tp(·)A a smooth unit normal vector field
along p. Given a > 0, we consider the straight strip � := R × (−a, a) and define a curved
strip � of same width over p as an a-tubular neighbourhood of p in A by

� := L (�) where L : (s, u) �→ expp(s)(un(s)). (4.1)

Note that s �→ L (s, u) traces the curves parallel to p at a fixed distance |u|, while the curve
u �→ L (s, u) is a unit-speed geodesic orthogonal to p for any fixed s. We always assume

Assumption 4.1. L : � → � is a diffeomorphism.

Then L −1 determines a system of Fermi ‘coordinates’ (s, u), i.e. the geodesic coordinates
based on p. The metric tensor of � in these coordinates acquires [18, section 2.4] the diagonal
form

g(s, u) = diag(h2(s, u), 1) (4.2)

where h is a smooth function satisfying the Jacobi equation

h,22 + Kh = 0 with

{
h(·, 0) = 1
h,2(·, 0) = −κ.

(4.3)

Here K and κ are considered as functions of the Fermi coordinates (the sign of κ being uniquely
determined up to the re-parametrization s �→ −s or the choice of n). The determinant of the
metric tensor, |g| := det(g) = h2, defines through dv := h(s, u)dsdu the area element of the
strip.

Assuming that the metric g is uniformly elliptic in the sense that

Assumption 4.2. ∃c± ∈ (0,∞) s.t. ∀(s, u) ∈ �, c− � h(s, u) � c+

holds true, the Dirichlet Laplacian corresponding to � can be defined in the same way as in
section 3.2, i.e. as the operator H̃ associated with the form (3.9), satisfying (3.10). At the
same time, we may introduce the unitarily equivalent operator H on L2(�) given by (3.12)
and satisfying (3.14) with (3.15).

Remark 4.1. If assumption 4.2 holds true, then the inverse function theorem together with
(4.3) yields that assumption 4.1 is satisfied for all sufficiently small a provided the strip � does
not overlap itself. Assumption 4.2 is satisfied, for instance, if � is a sufficiently thin strip on
a ruled surface, cf [23, section 7].
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4.2. Results

In view of the more general approach in the beginning of section 3.3, we see that assumption 3.3
(with d = 2) guarantees assumptions 2.1 and 2.2 also in the present case. Applying theorem
2.16, we obtain, with T = {n2ν1}∞n=1 where ν1 := π2/(2a)2, the following result:

Theorem 4.2. Let � be a tubular neighbourhood of radius a > 0 about a smooth infinite
curve, which is embedded in a smooth connected complete non-compact surface of bounded
curvature. Consider assumptions 4.1, 4.2 and 3.3. Then all the spectral results (i)–(iv) of
theorem 2.16 hold true for the Dirichlet Laplacian on L2(�).

Assume now that the strip is flat in the sense of [23], i.e. the curvature K is equal to zero
everywhere on �. Then the Jacobi equation (4.3) has the explicit solution (cf (3.8) for d = 2)

h(s, u) = 1 − κ(s)u (4.4)

and assumption 3.3 can be replaced by some conditions on the decay of the curvature κ at
infinity, namely, we adopt assumption 3.4 with κ1 ≡ κ and Kµ

ν = 0 (cf the assumptions of
theorem 1.1). At the same time, it is easy to see that assumption 4.1 and 4.2 are satisfied if
assumption 3.2 holds true.

Theorem 4.3 (Flat strips). Let � be a tubular neighbourhood of radius a > 0 about a smooth
infinite curve of curvature κ , which is embedded in a smooth connected complete non-compact
surface of bounded curvature K such that K � � = 0. Consider assumption 3.2 and

(1) κ(s), κ̈(s) −→ 0 as |s| → ∞,
(2) ∃ϑ ∈ (0, 1] s.t. κ̇(s),

···κ(s) = O(|s|−(1+ϑ)).

Then, all the spectral results (i)–(iv) of theorem 2.16 hold true for the Dirichlet Laplacian on
L2(�).
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[14] Exner P, Freitas P and Krejčiřı́k D A lower bound to the spectral threshold in curved tubes (submitted) (Preprint
on http://www.math.kth.se/spect/preprints)
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